Krylov SSP Integrating Factor Runge–Kutta WENO Methods
نویسندگان
چکیده
منابع مشابه
Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations
Implicit integration factor (IIF) methods were developed in the literature for solving time-dependent stiff partial differential equations (PDEs). Recently, IIF methods are combined with weighted essentially non-oscillatory (WENO) schemes in [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368-388] to efficiently solve stiff nonlinear advection-diffusion-reaction equations. The me...
متن کاملKrylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations
Article history: Received 15 October 2012 Received in revised form 25 June 2013 Accepted 15 July 2013 Available online 23 July 2013
متن کاملEffective order strong stability preserving RungeKutta methods
We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of ef...
متن کاملComputational Complexity Study on Krylov Integration Factor WENO Method for High Spatial Dimension Convection-Diffusion Problems
Integration factor (IF) methods are a class of efficient time discretization methods for solving stiff problems via evaluation of an exponential function of the corresponding matrix for the stiff operator. The computational challenge in applying the methods for partial differential equations (PDEs) on high spatial dimensions (multidimensional PDEs) is how to deal with the matrix exponential for...
متن کاملKrylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations
Implicit integration factor (IIF) methods were developed for solving time-dependent stiff partial differential equations (PDEs) in literature. In [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368–388], IIF methods are designed to efficiently solve stiff nonlinear advection–diffusion–reaction (ADR) equations. The methods can be designed for an arbitrary order of accuracy. The st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: 2227-7390
DOI: 10.3390/math9131483